1,525 research outputs found

    Parton distribution function for quarks in an s-channel approach

    Get PDF
    We use an s-channel picture of hard hadronic collisions to investigate the parton distribution function for quarks at small momentum fraction x, which corresponds to very high energy scattering. We study the renormalized quark distribution at one loop in this approach. In the high-energy picture, the quark distribution function is expressed in terms of a Wilson-line correlator that represents the cross section for a color dipole to scatter from the proton. We model this Wilson-line correlator in a saturation model. We relate this representation of the quark distribution function to the corresponding representation of the structure function F_T(x,Q^2) for deeply inelastic scattering

    Application of the Covariant Spectator Theory to the study of heavy and heavy-light mesons

    Full text link
    As an application of the Covariant Spectator Theory (CST) we calculate the spectrum of heavy-light and heavy-heavy mesons using covariant versions of a linear confining potential, a one- gluon exchange, and a constant interaction. The CST equations possess the correct one-body limit and are therefore well-suited to describe mesons in which one quark is much heavier than the other. We find a good fit to the mass spectrum of heavy-light and heavy-heavy mesons with just three parameters (apart from the quark masses). Remarkably, the fit parameters are nearly unchanged when we fit to experimental pseudoscalar states only or to the whole spectrum. Because pseudoscalar states are insensitive to spin-orbit interactions and do not determine spin-spin interactions separately from central interactions, this result suggests that it is the covariance of the kernel that correctly predicts the spin-dependent quark-antiquark interaction

    A covariant constituent-quark formalism for mesons

    Full text link
    Using the framework of the Covariant Spectator Theory (CST) [1] we are developing a covariant model formulated in Minkowski space to study mesonic structure and spectra. Treating mesons as effective qqˉq\bar{q} states, we focused in [2] on the nonrelativistic bound-state problem in momentum space with a linear confining potential. Although integrable, this kernel has singularities which are difficult to handle numerically. In [2] we reformulate it into a form in which all singularities are explicitely removed. The resulting equations are then easier to solve and yield accurate and stable solutions. In the present work, the same method is applied to the relativistic case, improving upon the results of the one-channel spectator equation (1CSE) given in [3].Comment: 6 pages, 5 figures, Presented at EEF70, Workshop on Unquenched Hadron Spectroscopy: Non-Perturbative Models and Methods of QCD vs. Experimen

    A relativistic coupled-channel formalism for the pion form factor

    Get PDF
    The electromagnetic form factor of a confined quark-antiquark pair is calculated within the framework of point-form relativistic quantum mechanics. The dynamics of theexchanged photon is explicitly taken into account by treating theelectromagnetic scattering of an electron by a meson as a relativistic two-channel problem for a Bakamjian-Thomas type mass operator. This approach guarantees Poincare invariance. Using a Feshbach reduction the coupled-channel problem can be converted into a one-channel problem for the elastic electron-meson channel. By comparing the one-photon-exchange optical potential at the constituent and hadronic levels, we are able to unambiguously identify the electromagnetic meson form factor. Violations of cluster-separability properties, which are inherent in the Bakamjian-Thomas approach, become negligible for sufficiently large invariant mass of the electron-meson system. In the limit of an infinitely large invariant mass, an equivalence with form-factor calculations done in front-form relativistic quantum mechanics is established analytically.Comment: 3 pages, 1 figure, submitted to EPJ Web of Conference

    Relativistic phenomenology of meson spectra with a covariant quark model in Minkowski space

    Get PDF
    In this work, we perform a covariant treatment of quark-antiquark systems. We calculate the spectra and wave functions using a formalism based on the Covariant Spectator Theory (CST). Our results not only reproduce very well the experimental data with a very small set of global parameters, but they also allow a direct test of the predictive power of covariant kernels

    Testing saturation with diffractive jet production in deep inelastic scattering

    Full text link
    We analyse the dissociation of a photon in diffractive deep inelastic scattering in the kinematic regime where the diffractive mass is much bigger than the photon virtuality. We consider the dominant q\bar{q}g component keeping track of the transverse momentum of the gluon which can be measured as a final-state jet. We show that the diffractive gluon-jet production cross-section is strongly sensitive to unitarity constraints. In particular, in a model with parton saturation, this cross-section is sensitive to the scale at which unitarity effects become important, the saturation scale. We argue that the measurement of diffractive jets at HERA in the limit of high diffractive mass can provide useful information on the saturation regime of QCD.Comment: 12 pages, 5 figures, misprints corrected, published versio

    Point-form quantum field theory and meson form factors

    Full text link
    We shortly review point-form quantum field theory, i.e. the canonical quantization of a relativistic field theory on a Lorentz-invariant surface of the form xÎĽxÎĽ=Ď„2x_\mu x^\mu = \tau^2. As an example of how point-form quantum field theory may enter the framework of relativistic quantum mechanics we discuss the calculation of the electromagnetic form factor of a confined quark-antiquark pair (e.g. the pion).Comment: 3 pages, 2 figures. Based on a talk presented by W. Schweiger at the 20th European Conference on Few-Body Problems in Physics, September 10-14 2007, Pisa, Ital

    Color Glass Condensate and BFKL dynamics in deep inelastic scattering at small x

    Full text link
    The proton structure function F_2(x,Q^2) for x < 0.01 and 0.045< Q^2 < 45 GeV^2, measured in the deep inelastic scattering at HERA, can be well described within the framework of the Color Glass Condensate.Comment: 4 pages, 1 figure, incl. IOP style files. Talk given at the 17th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004), Oakland, CA USA, 11-17 Jan 200

    Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Get PDF
    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.Comment: 4 pages, 2 figures; 21st International Conference on Few-Body Problems in Physics, May 18 - 22, 2015, Chicago, US

    Heavy flavour production in DGLAP improved saturation model

    Get PDF
    The charm and beauty quark production in deep inelastic scattering at low values of the Bjorken variable x is considered in the DGLAP improved saturation model. After fitting parameters of the model to the structure function F_2, the heavy quark contributions Fc_2 and Fb_2 are predicted. A good description of the data is found. Predictions for the longitudinal structure function F_L and the diffractive structure function FD_2 are also presented.Comment: 16 pages, 7 figures; typos corrected, references added, final Phys.Rev. D versio
    • …
    corecore